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δ central-difference operator
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ref reference conditions
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Numerical Analysis of Tangential Slot Blowing on a Generic Chined Forebody

ROXANA M. AGOSTA
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Summary

A numerical study is performed to investigate the effects
of tangential slot blowing on a generic chined forebody.
The Reynolds-averaged, thin-layer, Navier–Stokes
equations are solved to obtain the high-angle-of-attack
viscous flow field about a generic chined forebody.
Tangential slot blowing is investigated as a means of
forebody flow control to generate side force and yawing
moment on the forebody. The effects of jet mass flow
ratios, angle of attack, and blowing slot location in the
axial and circumferential directions are studied. The
computed results are compared with available wind
tunnel experimental data. The solutions with and without
blowing are also analyzed using helicity density contours,
surface flow patterns, and off-surface instantaneous
streamlines. The results of this analysis provide details of
the flow field about the generic chined forebody, as well
as show that tangential slot blowing can be used as a
means of forebody flow control to generate side force and
yawing moment.

1. Introduction

Future aircraft designs will make use of the fixed
separation points of a diamond-shaped cross section or a
chined forebody, as utilized on the YF-22 and the F-23
configurations. Wind tunnel tests have been conducted to
compare a conventional forebody with a chined forebody
(ref. 1). These tests show that the chined forebody pro-
duces more lift than the conventional forebody, even at
post-stall angles of attack. This is due to the additional
planform area and the suction produced by the strong
forebody vortices. These forebody vortices also give the
chined forebody improved lateral-directional stability,
which can be attributed to the upward shift of the leeward
vortex. Chined geometries have been shown to reduce the
radar cross section of a body (ref. 2) and thus minimize
radar detection.

As the flight envelope of present and future aircraft
increases to include high-angle-of-attack flight, the need
to understand the complex flow field of an aircraft flying
in this regime increases. The flow field about a body at
high angle of attack is dominated by large regions of
three-dimensional separated flow. The boundary layer

separates from the body and rolls up on the leeward side
of the body to form strong vortices (refs. 3–6). Possible
vortex asymmetry in the flow field can produce side force
and yawing and rolling moments, which may lead to
aircraft instability. Furthermore, the vertical tails lie in the
wake of the forebody and wings, which reduces the
effectiveness of these control surfaces. As the aircraft
angle of attack increases, the yaw control power required
to coordinate a rolling maneuver increases to levels
beyond what conventional rudders can provide (fig. 1.1).
Forebody flow control has the potential of providing
additional directional control power at large angles
of attack.

Forebody flow control can be obtained using mechanical
or pneumatic methods. Experimental and numerical
investigations show that both methods produce similar
results (refs. 1 and 7). One method currently being
investigated is forebody tangential slot blowing (refs. 1,
8, and 9). In this method, air is blown tangential to the
surface from a thin slot which is located on the forebody
of the aircraft (fig. 1.2). In a “conventional,” smooth
forebody, tangential slot blowing will move the primary
cross-flow separation location toward the leeward sym-
metry plane on the blowing side, and there may or may
not be a secondary separation on the blowing side. For a
chined forebody, the primary separation will occur at the
chine for the no-blowing case as shown in figure 1.3.
Unlike a conventional, smooth forebody, blowing from a
slot located on the top surface of the chined forebody
does not move the primary separation line from its
location at the chine line, but it does disturb the
no-blowing flow field (fig. 1.3(a)), and draws the
blowing-side vortex toward the surface while the
nonblowing-side vortex moves away from the surface
(fig. 1.3(b)). Blowing outboard from a slot located on the
bottom surface (fig. 1.3(c)) has a similar, but mirror-
image effect. Here the jet forces the blowing-side vortex
away from the body surface, while the nonblowing-side
vortex moves closer to the body. In contrast to a con-
ventional forebody, the primary cross-flow separation
remains located at the chine, and a secondary separation
does exist. These changes in the flow field generate side
forces and yawing moments which have the potential of
being employed to control the aircraft at high angles
of attack.
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A small-scale wind tunnel experiment was performed
(ref. 10) in the 3- by 4-Foot Low Speed Wind Tunnel at
California Polytechnic State University (Cal Poly) to
investigate the effectiveness of tangential slot blowing on
a generic chined forebody. The dimensions of the wind
tunnel model are shown in figure 1.4. The effects of
varying slot lengths, jet mass flow ratios, and varying
angles of attack were investigated. Experimental results
obtained included measurement of total forces and
moments, as well as limited flow visualization.

In this study, a complementary computational fluid
dynamics (CFD) investigation of tangential slot blowing
is performed on a generic chined forebody similar to the
model used in the Cal Poly wind tunnel test. The primary
objective is to numerically investigate tangential slot
blowing on a generic chined forebody as a means of
generating side force and yawing moment. The effects of
jet mass flow ratios, angle of attack, and blowing slot
location in the axial and circumferential directions are
studied. The numerical results are compared with the data
obtained in the Cal Poly wind tunnel experiment, and
extend the results to slot configurations not tested in the
wind tunnel.

This work is presented in the following sections. The
governing equations and numerical methods are discussed
in sections 2 and 3, respectively. Grid generation and
boundary conditions are described in section 4. Section 5
analyzes the flow field about the generic chined forebody
and the effects of jet mass flow ratios, angle of attack, and
slot locations. Finally, section 6 summarizes the results
and discussions.

I wish to express my appreciation to Russell M.
Cummings, for his valuable advice and guidance
throughout this study. I am also grateful to Jon A.
Hoffmann, Ronald S. Mullisen, Lewis B. Schiff, and
Ken Gee for their remarks and discussion. This study
was funded in part by NASA Grant NCA2-626.

2. Governing Equations

The universal laws of the conservation of mass,
momentum, and energy are the basis of the fundamental
equations of fluid dynamics. These conservation laws are
used to compose the three-dimensional Navier–Stokes
equations which are the governing equations for a
Newtonian fluid. A Newtonian fluid is a fluid where the
stress is linearly dependent on the rate of strain. The
Navier–Stokes equations are a set of five coupled,
nonlinear partial differential equations which are the
foundation of the science of viscous flow theory (ref. 11).

Upon assuming that body forces and the addition of
external heat are negligible, the Navier–Stokes equations
can be written in nondimensionalized conservation law
form as

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

ν ν νQ E F G E F G
t x y z x y z

+ + + = + +
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Re
(2.1)
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where ρ is density, u, v, and w are the x, y, and z velocity
components, respectively, p is pressure, and e is the total
energy per unit volume. In equation (2.3), the Reynolds
number, Re, is defined as

Re = ∞ ∞
∞

ρ
µ
a L

(2.3)

where the subscript ∞ denotes free-stream values, a is
the speed of sound, L is a reference length, and µ is the
coefficient of viscosity. The Reynolds number indicates
the relative importance of inertial and viscous effects in
the fluid motion. The viscous flux vectors, Ev, Fv, and
Gv, are defined as

E F Gν ν ν

τ

τ

τ
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τ

τ

τ

β

τ
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β
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where

τ λ µ

τ λ µ

τ λ µ

τ τ µ

τ τ µ

τ τ µ

β γ ∂ τ

xx x y z x

yy x y z y

zz x y z z

xy yx y x

xz zx z x

yz yx z y

x x I xx

u v w u

u v w v

u v w w

u v

u w

v w

k e u v

= + + +

= + + +

= + + +

= = +

= = +

= = +

= + +−
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1Pr ττ τ

β γ ∂ τ τ τ
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+

= + + +

= + + +

−

−

Pr
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1

1

(2.5)

Here, the Prandtl number, Pr, is

Pr =
∞

µc

k
p

(2.6)

where cp is the specific heat at constant pressure, and k
is the coefficient of thermal conductivity. The Prandtl
number is indicative of the relative ability of the fluid to
diffuse momentum and internal energy by molecular
mechanisms.

The internal energy, eI, and the pressure, p, are given in
terms of the other flow variables as

e
e

u v w

p e u v w

I = − + +

= − − + +[ ]
ρ

γ ρ

0 5

1 0 5

2 2 2

2 2 2

. ( )

( ) . ( )

(2.7)

The following procedure was followed in order to
nondimensionalize the variables appearing in
equations (2.1–2.7): the spatial coordinates, (x, y, z),
are divided by a reference length, Lref; the velocity is
divided by the free-stream speed of sound; density and
viscosity are divided by their free-stream values; time is
divided by L aref ∞ ; and the pressure is normalized by
ρ∞ ∞a2 . Stokes hypothesis is applied, which states that for
a gas the coefficient of bulk viscosity, λ, can be related to
the coefficient of dynamic viscosity, µ, by the following
relationship

λ µ= − 2

3
(2.8)

For turbulent flows, equation (2.1) can be considered to
be the Reynolds-averaged Navier–Stokes equations,
where the high frequency fluctuations of the turbulent
flow field are time averaged. For turbulent flows, a
turbulence model must be used to specify the coefficients
of viscosity and heat conductivity which appear in the
viscous terms in equation (2.5). This will be further
discussed in a following subsection.

Coordinate Transformation

In order to apply the numerical algorithm and boundary
conditions easily, the governing equations which are
developed in the physical domain or Cartesian coordi-
nates, (x, y, z), must be transformed to the computational
domain or generalized coordinates, (ξ, η, ζ), as seen in
figure 2.1 (ref. 11). In this study, ξ, η, and ζ are the
coordinates in the axial, circumferential, and radial
directions, respectively. The general transformation is
of the form

ξ ξ

η η

ζ ζ

τ

=

=

=

=

( , , , )

( , , , )

( , , , )

x y z t

x y z t

x y z t

t

(2.9)

and the inverse of the transformation is

x x

y y

z z

t

=

=

=

=

( , , , )

( , , , )

( , , , )

ξ η ζ τ

ξ η ζ τ

ξ η ζ τ

τ

(2.10)

The transformation brings the body surface onto one
computational plane (ζ = 1). The computational domain
is chosen to have equal spacing (∆ξ = ∆η = ∆ζ = 1) to
simplify the differencing. By using the chain rule of
partial differentiation, the partial derivatives in the
physical domain become
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∂
∂

ξ ∂
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η ∂
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ζ ∂
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∂
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ξ ∂
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η ∂
∂η

ζ ∂
∂ζ

∂
∂

ξ ∂
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t t t

= + +

= + +

= + +

= + + +

(2.11)

where τ t = 1 and the metrics τ τx y, ,  and τ z  are equal
to zero. The metrics ( , , , , , , , , ,ξ η ζ ξ η ζ ξ η ζx x x y y y z z z
ξ η ζt t t, , )  that appear in equations (2.10) are obtained in
the following manner. The differential expressions are

d dx dy dz dt
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d dt
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which can be written in matrix form as
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Thus, the transformation metrics are
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where J is the Jacobian of the transformation, defined as

J
x y z t

x y z t

x y z t

x y z t
= =∂ ξ η ζ τ

∂
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η η η η
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This may be simplified to

J
x y z
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which can be evaluated in the following manner
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The metrics can be determined by using a finite-
difference scheme in the computational domain.

Applying this generalized transformation to the
Navier–Stokes equation (2.1), the following transformed
equations are obtained

∂
∂τ

∂
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∂
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∂
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∂
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where the inviscid flux terms are
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while the viscous flux terms are given by

ˆ

ˆ
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(2.22)

In equations (2.21) U, V, and W are the contravariant
velocity components defined as

U u v w

V u v w

W u v w

t x y z

t x y z

t x y z

= + + +

= + + +

= + + +

ξ ξ ξ ξ

η η η η

ζ ζ ζ ζ

(2.23)

Thin-Layer Approximation

The thin-layer approximation to the Navier–Stokes
equations is generally used with a body-oriented coordi-
nate system, (ξ, η, ζ), where one of the coordinates
(usually ζ) is approximately normal to the surface of the
body. The thin-layer approximation is formally derived
from the complete Navier–Stokes equations by using
the same principles employed in the derivation of the
unsteady boundary-layer equations, where terms on
the order of 1/(ReL)1/2 and smaller are neglected.
As a result, in the thin-layer approximation to the
Navier–Stokes equations, the viscous terms containing
derivatives in the directions parallel to the body surface
are neglected.

The concept of thin-layer approximation also stems from
examining typical high Reynolds number computations
involving the complete Navier–Stokes equations (ref. 12).
These computations involve highly stretched grids where
the spacing in the streamwise direction is much larger
than in the normal direction. As a consequence, the
gradients parallel to the body surface are generally not
resolved adequately even if the complete viscous terms
are included in the computations (ref. 12). Thus, for high
Reynolds number Navier–Stokes computations, the terms
that are not being adequately resolved should be dropped,
providing they are relatively small.

The thin-layer approximation to the transformed
Navier–Stokes can be applied to a body in the computa-
tional domain, (ξ, η, ζ), where ζ is the coordinate normal
to the body surface. The approximation states that all
viscous terms containing partial derivatives with respect
to ξ and η are neglected (ref. 13). The resulting thin-layer
governing equations are

∂
τ

∂
∂ξ

∂
∂η

∂
∂ζ

∂
∂ζ

ˆ ˆ ˆ ˆ ˆQ E F G S
d

+ + + =






1

Re
(2.24)

where ˆ , ˆ , ˆ ,Q E F  and Ĝ  are identical to those defined in
equations (2.21), and the retained viscous terms are
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Even with the reductions in computer time due to the use
of the reduced viscous terms, solution of the thin-layer
Navier–Stokes equations about complex geometries still
require a large amount of computer time, particularly in
comparison with the time needed for solutions of the
inviscid Euler equations. However, at a minimum, the
thin-layer Navier–Stokes equations are needed to
resolve the complex viscous flow physics for the
cases under study. Studies have shown that using the
full Navier–Stokes equations versus the thin-layer
Navier–Stokes equations shows no significant improve-
ment in the computational solutions for high-angle-of-
attack flows. The thin-layer assumption remains valid
for high-alpha flows about slender bodies since the flow
field can be considered as a series of attached viscous
boundary layers on the body surface, underneath the
separated vortical external flow. Moreover, the grid
spacing in the streamwise and circumferential directions
is coarse when compared to the spacing in the normal
direction within the viscous layers.

Turbulence Modeling

In order to predict turbulent flows by solving the thin-
layer Navier–Stokes equations, closure assumptions must
be made about the apparent turbulent stress and heat-flux
quantities. The Boussinesq approximation, that the
apparent turbulent shearing stresses might be related to
the rate of mean strain through an apparent scalar
turbulent or eddy viscosity, is used. In this study, the
Baldwin–Lomax turbulence model (ref. 12) will be used,
together with the Degani–Schiff modifications (ref. 13)
for high-alpha flows.

Baldwin–Lomax turbulence model– The
Baldwin–Lomax turbulence model (ref. 12) is a zero-
equation, two-layer algebraic model which is widely used
because of its simplicity, low computational time, and

accuracy. A study (ref. 14) was conducted to compare
results obtained using the Baldwin–Lomax turbulence
model with results from more complex models for
turbulent flow about a prolate spheroid at high angles of
attack. It was found that the more complex models gave
no improvement in resolving the flow physics; thus, the
Baldwin–Lomax model was used in this study.

The Baldwin–Lomax turbulence model is developed
from an algebraic model developed by Cebeci (ref. 15),
with modifications that avoid determining the edge of
the boundary layer. This makes the Baldwin–Lomax
turbulence model easier to use with finite-differencing
schemes.

The effects of turbulence are simulated in terms of an
eddy viscosity coefficient, µt , and a coefficient of
thermal conductivity, k, in the Navier–Stokes equations.
For turbulent-flow computations, the coefficients of
viscosity and thermal conductivity are assumed to consist
of the sum of the laminar-flow and the turbulent-flow
coefficients

µ µ µ= +l t (2.26)

k

cp

l t

t
= +µ µ

Pr Pr
(2.27)

In equation (2.25), k and µ are related through the
assumption of a constant Prandtl number. The laminar
molecular viscosity, µl , is obtained from Sutherland’s
Law (ref. 12)

µl C
T

T C
=

+1
2

3 2/

(2.28)

where T is the temperature (°R), and C1 and C2 are
constants for a given gas. For air at moderate tempera-
tures, C1 = 2.27 × 10–8 lbf sec/ft2 and C2 = 198.6 °R.

The turbulent flow about a body is divided into an inner
(near wall) region and an outer region. A different
formula is used in each region to determine the turbulent
molecular viscosity, µt, which is defined as

µ
µ
µt

t inner crossover

t outer crossover

y y

y y
=

≤
<





,

,
(2.29)

where y is the normal distance from the wall and
ycrossover  is the smallest value of y at which values
from the inner and the outer formulas are equal.

The inner region turbulent viscosity coefficient is found
by using the Prandtl–Van Driest formula

  ( )µ ρ ωt inner = l2 (2.30)



7

where ρ is density and

  
l = − −( )





+ +ky y A1 exp (2.31)

The magnitude of the vorticity, ω , is expressed in
Cartesian coordinates as

ω ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

= −






+ −






+ −





u

y

v

x

v

z

w

y

w

x

u

z

2 2 2
(2.32)

In equation (2.31), k and A+ are constants, and y+ is
defined as

y
u y yw

w

w w

w

+ = =ρ
µ

ρ τ
µ

τ (2.33)

The subscript w in equation (2.33) denotes values
evaluated at the wall.

The outer region turbulent viscosity coefficient for
attached boundary layers is determined by

µt outer cp wake KlebK C F F y( ) = ( ) (2.34)

where K is the Clauser constant, Ccp is an additional
constant, and Fwake is determined by the relationship

F y F C y u Fwake wk dif= min {( ), ( / )}max max max max
2 (2.35)

where

u u v w u v wdif = + +



 − + +





2 2 2 2 2 2

max min
(2.36)

The second term in udif is set equal to zero except in
wakes. The function FKleb(y) is the Klebanoff
intermittency factor given by

F y
C y

yKleb
Kleb( ) .
max

= +


















−

1 5 5
6 1

(2.37)

In equation (2.35), Fmax is the maximum value of the
following function in the local profile

F y y y A( ) = − −( )





+ +ω 1 exp (2.38)

and ymax is the value of y at which this maximum occurs
from the body surface.

The constants in equations (2.34–2.38) were determined
(ref. 12) by requiring agreement with the Cebeci (ref. 16)
formulation for constant pressure boundary layers at
transonic speeds. The values are reported (ref. 12) as

A k

C K

C

C

cp

Kleb

wk t

+ = =
= =
= =
= =

26 0 4

1 6 0 0168

0 3 0 72

0 25 0 9

.

. .

. .

. .

Pr

Pr

(2.39)

Degani–Schiff modifications– The flow fields of a body
at high angles of attack are complex and generally contain
regions of three-dimensional cross-flow separation as
shown in figure 2.2 (ref. 13). Cross-flow separation
appears when fluid flowing circumferentially from the
windward to the leeward side of the body separates from
the sides of the body along a separation line that is
nominally parallel to the longitudinal axis of the body.
Then the fluid rolls up to form a well defined vortex
structure on the leeward side of the body (ref. 13). The
amount of cross-flow separation increases as the angle of
attack increases. Thus, accurate resolution of the cross-
flow separation line on the leeward side of the body is
important when computing high-angle-of-attack flows.

When applying the original Baldwin–Lomax turbulence
model in regions of cross-flow separation, it is difficult to
correctly determine the values for ymax in the separated
regions. In the outer region, the original method led to
unrealistic values of µt. Both ymax and µt outer( )  are
overly predicted, causing the flow structures on the body
surface to disappear. In the resulting numerical solutions,
this overprediction leads to the inability to determine
secondary or tertiary separation lines and causes the
primary vortices to be much smaller than those observed
experimentally (ref. 13).

This can be illustrated further by examining F(y) in
equation (2.38) at two stations: one on the windward side
at φ = φ1 and the other on the leeward side at φ = φ2. The
boundary layer remains attached on the windward side as
shown in figure 2.2, and the corresponding profile of F(y)
has a single peak (fig. 2.3(a)). However, for the profile on
the leeward side, two peaks exist, where the larger peak
is not the desired one within the boundary layer. The
original implementation of the Baldwin–Lomax turbu-
lence model would have selected the largest value of F(y)
which would result in an overprediction of ymax and
Fmax and thus determine a value of µt that is too large.
As a result, the computed turbulent viscosity coefficients
behind the primary separation point would be too high
and would wash out the details of the leeward flow field.

In order to correct this problem, Degani and Schiff
(ref. 13) developed a scheme that stops the search for
Fmax once the first maximum is reached. The function
F(y) is calculated along a ray normal to the surface at
each surface grid point. The scheme finds the first peak in
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F(y) and then stops. A peak or local maximum is defined
when F(y) drops to 90% of the local maximum value.

In the region close to a separation line, a further criterion
is needed. Near the separation line the separated vortex
sheet (the second maximum of F(y)) lies close to the first
maximum, and therefore, the cutoff criterion as described
above would select the second maximum of F(y) to be the
correct maximum instead of the desired first one. Hence,
a second criterion must be used to solve this dilemma. A
search cutoff distance is specified based upon the ymax
from the previous ray such that

y c ycutoff ( ) ( )maxφ φ= = 0 (2.40)

where c is a constant nominally set between 3 and 5. In
the present study, c = 3.0. The rays are searched sequen-
tially from the windward to the leeward side in the
circumferential direction. If no maximum is found in F(y)
from y ycutoff≤  then the values of Fmax, ymax from the
previous ray are used. This assumption can be justified
since the conditions of the attached and separated
boundary layers must be related and should vary in a
smooth, continuous manner circumferentially around
the body.

3. Numerical Methods

In this study the algorithm employed to solve the thin-
layer Navier–Stokes equations is the F3D code reported
by Steger, Ying, and Schiff (ref. 16). This algorithm is a
two-factor, implicit, finite-difference algorithm utilizing
an approximate-factored, partially flux-split scheme. The
scheme uses upwind differencing in the streamwise
direction, ξ, and central differencing in the circumferen-
tial, η, and radial, ζ, directions. The F3D code can have
either first-order or second-order accuracy in time and has
second-order accuracy in space.

Implicit Method and Time Linearization

The fine grid spacing needed to resolve the viscous terms
in the normal direction prescribes the use of implicit,
rather than explicit methods. It is well known that the
maximum time step that is allowed for stability in explicit
time-marching schemes is proportional to the minimum
grid spacing. Thus, the explicit time-step limit that is
imposed by stability is excessively small for the viscous
grids used in this study. Implicit methods overcome this
restriction and permit a much larger time step. As a result,
implicit methods require less computer time to obtain a
viscous solution, even though the operation count per
time step is high. In order to use a noniterative implicit
algorithm for the solution of the thin-layer Navier–Stokes
equations, a time linearization of the nonlinear vectors

must be performed. The linearization procedure is easily
accomplished since the equations are written in con-
servation-law form. Taylor series expansion of the
vectors ˆ , ˆ , ˆ ,E F G  and Ŝ  about Q̂  is performed

ˆ ˆ ˆ ˆ ˆ ( )

ˆ ˆ ˆ ˆ ˆ ( )

ˆ ˆ ˆ ˆ ˆ ( )

ˆ ˆ ˆ ˆ ˆ

E E A Q Q

F F B Q Q

G G C Q Q

S S M Q Q

n n n n n

n n n n n

n n n n n

n n n n n

O t

O t

O t

+ +

+ +

+ +

+ +

= + −( ) +

= + −( ) +

= + −( ) +

= + −( )

1 1 2

1 1 2

1 1 2

1 1

∆

∆

∆

++ O t( )∆ 2

(3.1)

where ˆ , ˆ , ˆ ,A B C  and M̂ are the Jacobian metrics
defined by
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n
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n
n

n
n

n
n

=






=








=






=








∂
∂

∂
∂

∂
∂

∂
∂

(3.2)

and the superscript n denotes evaluation at the nth time
step where t = n∆t.

Applying the first-order Euler implicit formula and the
linearizations of equation (3.1) to equation (2.24) results
in a linear system

I B C M Q

E F G S

+ + + − +
















= − + − −






+ ( )

h

h O t

n n n n

n

∂
∂ξ

∂
∂η

∂
∂ζ

∂
∂ζ

∂
∂ξ

∂
∂η

∂
∂ζ

∂
∂ζ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

A
1

1 2

Re

Re

∆

∆

(3.3)

where I is defined as the identity matrix, h = ∆t,
∆ ˆ ˆ ˆQ Q Qn n n= −+1 , and ∂ ∂ξ ∂ ∂η, , and ∂ ∂ζ  are
approximated by finite differencing.

Beam and Warming Algorithm

Replacing the spatial derivatives in equation (3.3) with
central finite difference approximations produces a linear
system which is a block heptadiagonal matrix with non-
adjacent diagonals. In order to directly solve this system,
an inversion of a block matrix which is proportional to
the computational mesh is required. However, this is a
very costly process and a simplification is performed
which does not alter the accuracy of equation (3.3).
Approximate factorization of the left-hand-side operator
reduces the inversion to a sequence of one-dimensional
inversions. Beam and Warming (ref. 17) developed a
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factored algorithm to be applied to the two-dimensional
Euler gasdynamic equations. The viscous terms were
then added and the algorithm was applied to the two-
dimensional compressible Navier–Stokes equations
(ref. 18). The scheme was then applied to the transformed
equations by Steger (refs. 19 and 20) to compute the
flow around arbitrary two-dimensional geometries.
The algorithm was later extended to solve the three-
dimensional transformed thin-layer Navier–Stokes
equations (ref. 21). The following form of the algorithm
applies to both Euler implicit first-order and trapezoidal
second-order time accuracy.

( ˆ ) ( ˆ )

( ˆ ˆ ) ˆ ˆ

I A I B

I C M Q R

+ +

× + − =−

h h

h h

n n

n n n n

δ δ

δ δ

ξ η

ζ ζRe 1 ∆
(3.4)

where R̂  is

ˆ ( ˆ ˆ ˆ ˆ )R E F G Sn n n n n nt= − + + − −∆ δ δ δ δξ η ζ ζRe 1 (3.5)

The numerical scheme has second-order spatial accuracy
and either first- or second-order time accuracy. The first-
order-accurate Euler implicit form is produced when h is
equal to ∆t, and the second-order-accurate trapezoidal
form is produced when h is equal to ∆t/2. Central
differencing and a midpoint operator are denoted by
δ  and δ , respectively.

A series of three one-dimensional inversions is performed
in order to advance the solution from time-step n to time-
step n + 1.

( ˆ ) ˆ ˆ

( ˆ ) ˆ ˆ

( ˆ ˆ ) ˆ ˆ

ˆ ˆ ˆ

I A Q R

I B Q Q

I C M Q Q

Q Q Q

+ =

+ =

+ − =

= +

−

+

h

h

h h

n n

n

n n n

n n n

δ

δ

δ δ

ξ

η

ζ ζ

∆

∆ ∆

∆ ∆

∆

1

2 1

1 2

1

Re

(3.6)

Each inversion requires solution of a linear system which
is a block tridiagonal matrix. However, inversion of the
three-tridiagonal equations is much faster than direct
solution of the block heptadiagonal system. The fac-
torized scheme can be optimized for vector computers
by performing concurrent multiple line inversions and
thereby further reducing the computation time per
time step.

Flux Vector Splitting

Finite difference algorithms used to solve the
conservation law form of the unsteady inviscid gas-
dynamic equations in subsonic flow regimes have a

limited class of spatial difference approximations that can
be properly used. Only central difference operators lead
to schemes that are simultaneously stable for both the
positive and negative characteristic speeds or eigenvalues.
In contrast, schemes based on one-sided difference
operators are stable only for equations with single-signed
eigenvalues. However, these schemes contain better
dissipative and dispersive properties. The governing
equations have eigenvalues of mixed signs in subsonic
flow regimes and thus the flux vectors must be split prior
to using the one-sided spatial difference operators.

Flux vector splitting can be performed since the flux
vectors of equations (2.24) (for example E) and its
Jacobian matrix (in this case A) are homogeneous
function of degree one in Q. That is

E Q E Q( ) ( )α α= (3.7)

Applying Euler’s theorem for homogeneous functions
yields

E
E
Q

Q AQ= =∂
∂

(3.8)

where A is the Jacobian matrix equal to ∂ ∂E Q/ . Now the
flux vector can be split into two subvectors

E E E= ++ − (3.9)

where E+ and E– correspond to the subvector associated
with the positive and negative eigenvalues of A, respec-
tively (ref. 22). Any eigenvalue, λl , can be written as

λ λ λl l l= ++ − (3.10)

where

λ
λ λ

λ
λ λ

l
l l

l
l l+ −=

+
=

−
2 2

(3.11)

The subvectors E+ and E– can be differenced
individually by using the appropriate one-sided scheme.

Now that flux vector splitting has been performed,
upwind differencing is used in the streamwise direction
for the flux-split term, while central differencing is
retained in the circumferential and radial directions. This
leads to a two-factored, partially flux-split algorithm.

I A C

I A B Q R

+ ( ) + −





× + ( ) +





=

+ −

−

h h h

h h

b n n n

f n n n n

δ δ δ

δ δ

ξ ζ ζ

ξ η

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

Re 1 M

∆

(3.12)
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where

ˆ
ˆ ˆ ˆ

ˆ ˆ
R

E E F

G S

n
b n f n n

n n
t= −

( ) + ( ) +

+ −



















+ −

−
∆

δ δ δ

δ δ

ξ ξ η

ζ ζRe 1
(3.13)

where h t= ∆  for first-order time accuracy or h t= ∆ 2
for second-order time accuracy. The operators δ b  and
δ f  are backward and forward three-point difference
operators.

Similar to the procedure used to advance the Beam and
Warming algorithm, two inversions are used to advance
the solution from time-step n to time-step n + 1

I A C

M

Q R

I A B Q Q

Q Q Q

+ ( ) +

−



















=

+ ( ) +





=

= +

+

−
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+
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h h
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δ δ

δ

δ δ
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ˆ ˆ

ˆ

ˆ ˆ
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ˆ ˆ ˆ

Re 1

1

1

1

∆

∆ ∆

∆

(3.14)

Numerical Dissipation

As mentioned, the finite difference scheme uses upwind
differencing in the streamwise direction (ξ). This differ-
encing has natural numerical dissipation since it is a one-
sided method. In the circumferential (η) and radial (ζ)
directions, the F3D code uses central differencing, which
does not have natural numerical dissipation. Therefore,
numerical dissipation terms, Di and De, must be added in
the η and ζ directions.

The numerical dissipation terms are a combination of
second-order and fourth-order and are of the form
(ref. 22)

D t J

D t J

e

i

η
η

η
η

ε δ βδ ε δ
β

δ

ε δ βδ ε δ
β

δ

= +
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= +
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( ) ˆ .
ˆ

∆

∆

1
2 4

3

1
2 4

3

1

2 5
1

B
B

B
B

J

J

(3.15)

where

β
δ

δ
=

+( )
2

21

p

p
(3.16)

and where B̂ is the absolute value of the matrix B̂.
An analogous smoothing operator is applied in the
ζ direction. In equations (3.15–3.16), δ  is a midpoint
operator used with the viscous terms. Also p is the
nondimensional fluid pressure and ε2  is of O M1 +( )∞

γ

while ε4 is of O 0 01.( ). The second-order dissipation
terms are used to control numerical oscillations across
shock waves, whereas the fourth-order terms are used
elsewhere. The accuracy of the solution is improved by
further scaling the fourth-order numerical smoothing
terms by the nondimensional local velocity ratio, q/q∞
This reduces the numerical dissipation in the viscous
layer of the body surface, where viscous dissipation
controls the dispersion. Large amounts of numerical
smoothing in this region may in fact modify the physical
viscous terms and adversely affect the solution.

Numerical Algorithm

After applying linearization, approximate factorization,
flux splitting, and numerical dissipation, the following
implicit scheme for the thin-layer Navier–Stokes
equations is obtained

I A C M

I A B

E E F G S

+ ( ) + − −





× + ( ) + −





= − ( ) + ( ) + + −

+ −

−

+ − −

h h h D

h h D
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n

b n f n n n n
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δ δ

δ δ δ δ δ

ξ ζ ζ ζ

ξ η η

ξ ξ η ζ ζ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

Re

Re

1

1

∆

∆

Q









− +



D De e

n
η ζ Q̂

(3.17)

The computations presented are run until a steady state
solution is obtained. The convergence criteria are that the
l–2 norms should drop two to three orders of magnitude
and the body forces should level off. The numerical
algorithm can be fully vectorized to run on the
Cray Y-MP/C90. F3D has been used successfully to
model the flow over bodies of revolution at high inci-
dence and the flow field over the F-18 aircraft (refs. 9,
23–27). Additional details of the development of this
code can be found in references 16, 22, and 28.

Chimera Approach

The Chimera overset-grid scheme (refs. 29–31) is used to
allow treatment of the multiple-zone grid (discussed in
the next chapter). The Chimera overset method allows the
use of different grid densities, flow solvers, or turbulence
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models in the different zones of the flow depending on
the physical requirement. In the Chimera approach there
may be arbitrary “holes” in the grids or, in other words,
points that lie within a body from another grid. The hole
points may also include bordering points (ref. 31) which
are later updated by interpolating the solution from the
overset grid about the body which created the hole. At
these points the partial difference equations are not used
so that the points are changed. An array of values ib is
introduced to shut off the differencing scheme at hole
points. At normal grid points ib = 1, whereas at hole
points ib = 0. In the algorithm, the ib array multiplies the
dissipation terms and h; that is
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At a hole point, ib = 0 and the algorithm reduces to

∆Q̂n = 0 (3.19)

or ˆ ˆQ Qn n+ =1  and thus Q̂  is unchanged.

4. Grid Generation Procedure and Boundary
Conditions

A numerical simulation of forebody tangential slot
blowing is performed on a generic chined forebody in
support of a small-scale wind tunnel experiment. The
experiment is performed (ref. 10) at the Cal Poly
3- by 4-Foot Low Speed Wind Tunnel. The dimensions
of the wind tunnel model are shown in figure 1.4. The
overall length of the model is 20.25 in. At the base the
height and width are 8.086 in., and this value is used
to as the reference length. The body reference area,
51.276 in.2, is the area of a circle having a diameter
equal to 8.086 in.

Surface and Volume Grids

The grid used for numerical prediction of the flow field
about the generic chined forebody is shown in figure 4.1.
The surface geometry and surface grid for the chined
forebody are generated by spline representations using the
S3D code (ref. 32), with grid point redistribution in both

the axial and the circumferential directions. The surface
grid is clustered in regions where the flow gradients are
expected to be the greatest. These regions include the
chine area, where the flow is expected to separate. Next,
the HYPGEN code (refs. 33 and 34) is used to generate a
three-dimensional volume grid about the surface grid.
This is accomplished by solving the three-dimensional
hyperbolic grid generation equations, two orthogonal
relations and one cell volume constraint.

Slot Configuration

The features of the wind tunnel model are resolved by the
computational grid. The model contained a blowing slot
on each side of the forebody. The slot was located on the
upper surface of the model, behind a backward facing
step of height 0.03 in., and oriented to blow toward the
body leeward plane of symmetry (fig. 4.2). The total
length of the blowing slot is 6 in., while the width is
0.005 in. Each slot was divided into six segments (each
of 1 in. length), which were individually connected to
valves. As a result, the length and location of the active
slot could be varied. The first segment or blowing region,
closest to the nose, is referred to Slot 1; the second
segment as Slot 2, etc.

The computational slot geometry is modeled after the
experimental blowing slot. In the computations, there is a
slot grid on each side of the body grid. The computational
slot grids are created in the same manner as the body
grids, as described above. The blowing slot grids model
the physical length and width of the experimental slots
and the height of the backward-facing step. The active jet
length is varied in the computations through the use of
appropriate boundary conditions. A typical cross section
of the top blowing slot grid overlapping the body grid is
shown in figure 4.3.

Only one circumferential slot location, on the upper chine
surface and blowing inboard, was tested in the experiment
of reference 10. In order to determine whether an
alternative circumferential slot location could be more
effective in developing side forces and yawing moments
on the body, computations were also carried out for a slot
located on the lower chine surface and blowing tangen-
tially outboard (fig. 4.4). This slot had the same axial
location and extent of Slot 1 (fig. 4.1) and was modeled
on both sides of the body.

Chimera Overset Grid Scheme

Even with the large memory size available on the
Cray YMP/C90 computer, it is not practical to use a
single-zone, or single-block, body grid. Thus, a multi-
zone grid will be used for the computations of the



12

forebody. The body grid is broken into four grids to
decrease the required run-time core memory. The
Chimera overset grid scheme (refs. 29–31) is used to
unite the four body grids and the two slot grids into a
single six-zone grid. Figure 4.5 shows the grid boundaries
on the right half of the forebody. In addition, the Chimera
method simplifies the creation of computational grids
about complex geometries by dividing the physical
domain into smaller regions which then can be more
easily modeled. The overset grid method requires only
that neighboring grids overlap each other. The overset
method can also be used where there are regions which
overlap only slightly; thus, the current implementation
can also function in a blended overset and patched code
(ref. 24). The Pegasus code (ref. 35) is used to establish
communications among the interconnecting grids and to
blank out any unwanted regions.

Final Form of the Computational Grids

The four-zone body volume grid system is symmetric
about the plane of symmetry. Each of the two front body
grids consists of 40 axial points, 123 circumferential
points, and 50 normal points, whereas each of the
two back body grids consists of 12 axial points,
123 circumferential points, and 50 normal points. The
grid extends eight reference lengths normal to the body;
thus, the outer boundary is sufficiently far away so that
the effect of the outer boundary on the flow is minimized.
The grid extends seven body lengths upstream from
the nose.

In the current study, two different multi-zone grids, each
with six zones, are created: one for the slot located on the
top surface of the body to match the experimental model
and one for the slot located on the bottom surface for
numerical analysis. Both slot configurations are included
on both sides of the body. To model the experimental slot
configuration, two slot grids are added on the upper
surface of the body, one on each side of the body. Each of
the two slot grids on the top surface consists of 55 axial
points, 40 circumferential points, and 39 normal points.
The six-zone computational grid modeling the top slot has
a total of 811,200 points. Similarly, to model outward
blowing on the bottom surface, two bottom slot grids are
added to the four-zone body grid. Each of the two slot
grids located on the bottom surface consists of 55 axial
points, 86 circumferential points, and 39 normal points,
and the resulting six-zone grid contains a total of
1,008,540 points.

Boundary Conditions

In this numerical simulation, the boundary conditions
applied are no-slip with no normal velocity at the body
surface, which corresponds to the ζ = 1 plane. Free-
stream conditions are maintained at the outer boundaries.
The exit boundary uses a simple zero-axial-gradient
extrapolation condition. The outer boundary is suffi-
ciently far away from the generic chined forebody,
thereby minimizing the effects of the outer boundary on
the flow of the chined forebody. Chimera (refs. 29–31)
and Pegasus (ref. 35) are used to obtain boundary
conditions at grid boundaries that overlap neighboring
grids. In the slot grids’ outer boundaries, an overlap of
approximately one grid point is used except at the surface.
In order to reduce the computational time required to
converge a solution with blowing, the no-blowing case
solution is used as the initial flow conditions for the
blowing computations.

Slot Boundary Conditions

Jet mass flow ratios, MFR, equal to those used in the
experiment (ref. 10) are used in the numerical study.
MFR is defined as

MFR
m

m

V S

V S
jet

ref

jet jet jet

ref
= =

∞ ∞

˙

˙

ρ
ρ

(4.1)

where V is velocity, S is area, the subscript ref denotes a
reference value, and the subscript ∞ denotes free-stream
conditions. The current forebody computations utilize
boundary conditions that are physically realistic. The jet
in the slot grids is modeled computationally by using
boundary conditions to introduce the jet exit conditions
into the flow field. If the jet exit Mach number is less than
sonic, the jet total pressure and total temperature are
inputs to the flow solver. The exit pressure is obtained by
extrapolating the pressure from the local external flow
pressure at the jet exit. The jet exit Mach number is
then obtained by using the isentropic relations for one-
dimensional flow of inviscid gas (ref. 36). For sonic jets,
the flow is assumed to choke at the exit and the jet
pressure is obtained from isentropic relations using the jet
total pressure and the total temperature as inputs. In either
case, in order to match the experimental mass flow ratios,
the total pressure of the jet is increased, thereby increas-
ing the jet density, until the desired jet mass flow rate
is obtained.



13

5. Results and Discussion

Flow at high angle of attack is dominated by large regions
of three-dimensional separated flows, as discussed in
section 1. This leads to a loss of aircraft control power as
the conventional control surfaces become engulfed in the
separated flow. However, forces and moments can be
generated by manipulating the strong vortices and used to
control the aircraft. Forebody tangential slot blowing is
one method of vortex manipulation, where air is blown
from a thin slot located on the forebody tangential to the
surface. The jet forces the flow field to change about the
aircraft, which generates a side force and yawing moment
that can be used to control the aircraft.

A study of this flow control method is performed on a
generic chined forebody using computational fluid
dynamics. The F3D code is used to solve the flow field
about a generic chined forebody at two high angles of
attack, α = 30 deg and α = 40 deg at M∞ = 0.2 and a
Reynolds number (based on free-stream conditions and
body reference length) of Red = 2.81 × 105. Comparisons
are made with experimental data obtained at α = 30 deg
and α = 40 deg at M∞ = 0.06 and Red = 2.81 × 105. The
computational Mach number was chosen to be higher
than the experimental value to reduce computational
convergence time. However, since the Mach numbers are
low, the flows are essentially incompressible (ref. 36) and
thus the results can be compared. In all cases presented,
the computed flow is treated as being fully turbulent.

The results of the study are presented in the following
subsections. The first subsection presents a grid sensi-
tivity study. In the next subsection, the no-blowing
solutions, which illustrate the main features of the flow
field about the generic chined forebody and provide
baselines for comparison with the blowing cases, are
discussed. The last subsection discusses the results of the
blowing solutions, such as comparing experimental and
numerical data as MFR and angle of attack increase,
analyzing flow patterns and helicity density contours,
and, last, the effects of slot position, both axially and
circumferentially. Table 5.1 shows the numerical
solutions computed, along with the labels which will be
used to refer to them.

Grid Sensitivity Study

A grid sensitivity study is conducted to determine the grid
density required in the circumferential (η) direction to
resolve the physical flow features. For this particular
study, a half-body, single-zone grid is used. In all other
remaining studies a full-body, six-zone grid is utilized.
No-blowing solutions obtained using the F3D flow
solver at flow conditions of α = 30 deg, M∞ = 0.2, and

Red = 2.81 × 105 are examined. Three grids are used
in the computations (fig. 5.1): a coarse grid consisting
of 50 axial × 63 circumferential × 50 radial points; a
medium density grid with 50 × 123 × 50 points; and a fine
density grid with 50 × 243 × 50 points. The medium grid
is obtained by doubling the points in the η direction of the
coarse grid, and the fine grid is obtained by doubling the
η direction points of the medium grid.

Massless particles are released just above the surface and
are integrated in time using the velocity field to determine
the subsequent motion. The particles are restricted to stay
close to the surface. This effectively produces limiting
streamlines which illustrate the surface flow topology.
The computed surface flow pattern obtained from the
coarse grid solution is shown in figure 5.2. As discussed
in section 1, the chined forebody has a fixed primary
separation line at the chine which is not clearly shown in
figure 5.2. The surface flow pattern shows a secondary
separation line and a small tertiary separation line near the
aft of the body. Figure 5.3 shows the solution for the
medium density grid. Here, the secondary separation
line and the tertiary separation line are well defined.
Reattachment lines are also shown clearly in the medium
density grid.

Helicity density is defined (ref. 37) as the scalar product
of the velocity and vorticity vectors and is used to
illustrate the size and shape of the vortices in the flow
field. The helicity density contours provide some insight
into the behavior of the vortices. The contour lines
represent the strength of the vortices. Helicity density
contours shown in cross sections normal to the body at
fuselage station fs = 1.0, 4.0, and 15.5 in figures 5.2
and 5.3 indicate that the medium density grid solution
resolves the tertiary vortex as seen in the second and
third forebody stations, whereas the coarse density grid
solution does not. It should be noted that the forebody
stations are slightly magnified to clearly show the helicity
density contours.

Increasing grid density further shows no further
improvement in the surface flow topology or helicity
density contours (fig. 5.4). The surface flow patterns
obtained from the medium and fine density grid solutions
are similar, resolving the secondary and tertiary separa-
tion lines. There are small local differences near the aft of
the body; however, these differences are slight and do not
affect the overall physics of the flow. The helicity density
contours in figures 5.3 (medium density grid) and 5.4
(fine density grid) indicate both grids resolve the same
vortex structure and strength. The main features of the
flow field are clearly resolved using the medium density
grid. Thus, in order to minimize the CPU time required to
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converge a solution, the medium density grid will be used
for all further no-blowing and blowing cases.

No-Blowing Solutions

Solutions of the flow field about the generic chined
forebody without blowing are computed assuming fully
turbulent flow and used as baseline solutions from which
to compute the blowing solutions. A full body, multi-zone
grid is used in the following studies. The major features
of the computed no-blowing flow field about the forebody
at α = 30 deg are shown in figure 5.5. Primary cross-flow
separation lines occur at the chine line, and extend along
the entire length of the body. In addition, the secondary
and tertiary cross-flow separation lines extend from the
nose of the forebody to the end of the forebody. Surface
flow patterns are almost identical to those of the half-
body, single-zone solution (fig. 5.3) except that a dis-
continuity in the secondary separation line appears near
the middle of the body. This discontinuity is a result of
the post-processor, which has limitations in dealing with
multi-zone grids. However, the computed secondary
separation line is, in fact, continuous.

Helicity density contours at three fuselage stations,
fs = 1.0, 4.0, and 15.5 at α = 30 deg, are shown in
figure 5.5. The helicity density contours show that the
flow field is symmetric. The primary vortices grow larger
and more diffuse in the axial direction. The primary
vortices also move away from the forebody. The secon-
dary vortex, which is smaller and weaker, lies underneath
the primary vortex and rotates in the opposite direction of
the primary one.

When the angle of attack is increased to α = 40 deg, the
surface flow patterns show that the flow field is similar
to the α = 30 deg solution except that a fourth cross-flow
separation line appears near the back of the forebody
(fig. 5.6). The helicity density contours for α = 40 deg
are shown in figure 5.6 at the same contour levels as in
figure 5.5. By comparing the helicity density contours, it
is shown that the vortices are stronger in the α = 40 deg
case. The increased strength of the vortices and the fixed
position of the primary vortex are such that a fourth
separation line appears near the back of the forebody
for α = 40 deg.

Blowing Solutions

Solutions were computed for flow with tangential slot
blowing from the starboard side (pilot’s view) of the
body. The blowing slot is 1 in. in length, starting 0.5 in.
from the nosetip and extending aft. The slot is located on
the upper surface of the chine (fig. 1.4) and the blowing
was directed inboard toward the leeward symmetry plane,

matching one of the slot configurations tested in the
small-scale wind tunnel (ref. 10) test. The computational
jet mass flow ratios (MFR) were chosen equal to those of
the experiment.

In this subsection, computational and experimental data
are compared to determine the effect of MFR and angle of
attack on blowing effectiveness. Next, the computational
solutions are analyzed using surface flow patterns,
helicity density contours, and off-surface instantaneous
streamlines. Finally, the effect of slot placement, axially
and circumferentially, will be presented.

Comparison of numerical and experimental results–
As discussed, blowing perturbs the nominally symmetric
no-blowing forebody flow field, resulting in development
of a side force and yawing moment. The variation of the
incremental of side-force coefficient (∆CY) with MFR for
α = 30 deg is shown in figure 5.7. ∆CY is defined to be

∆C C CY Y blowing Y no blowing   = ( ) − ( ) − (5.1)

The coefficient of side force is

C
Y

q SY
ref

  =
∞

(5.2)

where Y is the side force, q∞ is the free-stream dynamic
pressure, and Sref is the reference area (fig. 1.4). The
computational and experimental results show the same
trends: as the MFR increases, ∆CY also increases.
However, the computational results underpredict the
magnitude of ∆CY.

Similarly, the incremental yawing moment coefficient,
∆Cn, is defined to be

∆C C Cn n blowing n no blowing   = ( ) − ( ) − (5.3)

where
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q S Ln
ref ref

  =
∞

(5.4)

Here, N is the yawing moment and Lref is the reference
length (fig. 1.4). The moments are taken about a moment
center located at the rear of the forebody (fig. 1.4). The
variation of ∆Cn with MFR for α = 30 deg is shown in
figure 5.8. The incremental yawing moment increases as
the mass flow ratios increase for both the experimental
and computational data. Again, the computational results
underpredict the yawing moment. The discrepancy in the
yawing moment is proportionally greater than that in the
side force. This indicates that the differences are greater
toward the nose of the forebody, in the blowing region,
since the moment center is located at the back of
the body.
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Figures 5.9 and 5.10 show the analogous variation of ∆CY
and ∆Cn with MFR for α = 40 deg. For α = 40 deg, the
experimental data show trends similar to those seen at
α = 30 deg. The experimental ∆CY and ∆Cn increase
smoothly with increasing MFR. The computed results,
however, show three distinct regions of effectiveness. In
the first region (denoted as Region I), low blowing rates
produce a negative ∆CY and ∆Cn. In Region II, ∆CY and
∆Cn increase with increasing MFR until a maximum is
reached. In Region III, further increases in MFR cause a
reduction in ∆CY and ∆Cn. Similar trends are observed in
experiments using the F/A-18 with jet and slot blowing
(ref. 38). These regions will be discussed further in
the following subsection. At this angle of attack, the
numerical results overpredict ∆CY and ∆Cn. In general,
the computed results are in better agreement with
experiment than at α = 30 deg, except at the low
MFR values.

As the angle of attack of the forebody is increased, the
flow field becomes more sensitive to perturbations. This
effect is shown in figure 5.11, which summarizes the data
shown in figures 5.8 and 5.10. As the angle of attack is
increased, a greater change in the incremental yawing
moment is produced for a given MFR. Both the present
computations and the experiment results show this trend.
Similar trends were observed in experiments using the
F/A-18 (ref. 38) and another chined forebody (ref. 39).
However, the experimental results for the present
configuration do not show as great an increase in
sensitivity as displayed by the computed results.

As stated above, a fixed strength jet becomes increasingly
effective as the angle of attack is increased. This is appar-
ent in the helicity density contours shown in figure 5.12.
Helicity density contours in a cross-flow plane at fuselage
station fs = 4.0 are shown for no-blowing and blowing
solutions for α = 30 deg and α = 40 deg. In the
no-blowing solutions, the vortices are stronger at
α = 40 deg (fig. 5.12(b)) than at α = 30 deg (fig. 5.12(a)).
When blowing is turned on, the α = 30 deg case
(fig. 5.12(c)) shows that the primary vortex on the
blowing side (left side of figure 5.12(c)) moves toward
the surface, whereas the primary vortex on the non-
blowing side moves away from the surface and
becomes weaker as compared to the no-blowing solution
(fig. 5.12(a)). In the α = 40 deg case (fig. 5.12(d)),
movement of the primary vortex is similar to α = 30 deg
case, except that the changes in the strength of the
vortices are larger. This bigger change, in turn, leads to
larger values of ∆CY and ∆Cn. For tangential slot blowing
it appears that changes in both strength and position of the
vortices are important in the effectiveness of blowing.
This is different from outward blowing where the

change in vortex position is more effective than
manipulating vortex strength (ref. 40).

Analysis of computational flow field– In order to
understand the flow physics causing the curious reversal
of the yawing moment at low blowing rates, and the
drop-off in yawing moment at the largest blowing rates,
blowing solutions from each region shown in figures 5.9
and 5.10 are analyzed. These include flows for
MFR = 0.23 × 10–3 (Region I), MFR = 1.49 × 10–3

(Region II), and MFR = 4.17 × 10–3 (Region III). The
sectional side-force coefficient distributions along the
body, cY (fig. 5.13), and sectional yawing-moment
coefficient distributions, cn (fig. 5.14), show the effect of
blowing in each region. At the lowest MFR (Region I),
cY is negative for all stations along the body, and thus
the total CY is negative, as seen in figure 5.9. For
MFR = 1.49 × 10–3 (Region II), the sectional side force is
always positive and increases in the axial direction. For
MFR = 4.17 × 10–3 (Region III), the sectional side force
is negative in the blowing region and then becomes
positive downstream of the slot. However, the positive
sectional cY is much smaller than for MFR = 1.49 × 10–3.
The sectional yawing-moment distribution (fig. 5.14)
shows similar results.

The behavior of the sectional side-force distributions can
be explained in part by examining the surface flow
patterns and helicity density contours. Upon comparing
the computed surface flow patterns for solutions with
MFR = 0.23 × 10–3 (fig. 5.15), MFR = 1.49 × 10–3

(fig. 5.16), and MFR = 4.17 × 10–3 (fig. 5.17) with the
no-blowing solution (fig. 5.6), it is seen that the largest
changes in the flow field occur in the blowing region near
the nose. The separation lines aft of the blowing region do
not appear to greatly change positions. Recall that the
blowing slot is located on the right side of the body (left
side of the body in the helicity density contours). A closer
examination of the surface flow patterns near the nose
(fig. 5.18) shows that at the lowest MFR (fig. 5.18(b))
the secondary cross-flow separation occurs inboard
of the location observed in the no-blowing solution
(fig. 5.18(a)). The attachment lines appear to remain in
approximately the same positions. In Region II, the
surface flow pattern shows that the jet remains attached
due to the Coanda effect. The interaction between the
upper surface flow and the jet causes an entrainment of
the lower momentum upper surface boundary layer flow
(refs. 41–43). In the attached region, the surface pressure
is lower than that at corresponding points on the non-
blowing side, which causes a side force toward the
blowing side. Finally, in Region III, the secondary
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separation line on the blowing side near the tip of the
nose has been severely altered. There are no visible
changes on the nonblowing side. The attachment lines
move toward the nonblowing side of the forebody.

The corresponding helicity density contours for the three
MFRs of figures 5.13 and 5.14 are shown in cross-flow
planes at three axial locations on the forebody in
figures 5.15–5.17. All three cases show that the helicity
density contours grow larger and more diffuse in the axial
direction. The first fuselage station, fs = 1.0, is located in
the middle of the blowing region. The helicity density
contours at fs = 4.0 and fs = 15.5 for the lowest MFR
(MFR = 0.23 × 10–3) show that the effect from blowing
is less downstream than upstream (fig. 5.15). The
contours for fuselage station fs = 4.0 and fs = 15.5 for
MFR = 1.49 × 10–3 (fig. 5.16) show that the blowing side
vortices move closer to the surface and the nonblowing
side vortices move away from the surface when compared
to the no-blowing solution (fig. 5.6) which causes tangen-
tial slot blowing to be effective in this region. At the
highest MFR (MFR = 4.17 × 10–3), the helicity contours
at fuselage station fs = 4.0 (fig. 5.17) show that the under-
expanded jet separates and reattaches to form a vortex in
the middle of the forebody.

A close-up view of the helicity density contours in the
cross-flow plane at fuselage station fs = 1.0 for the
no-blowing and the three blowing solutions is shown in
figure 5.19. The no-blowing case (fig. 5.19(a)) is
symmetric as described in the previous subsection. At
MFR = 0.23 × 10–3 (fig. 5.19(b)), the low-energy jet
causes the primary vortex on the blowing side to move
away from the surface, and the strength of the vortex is
reduced. At the same time, the nonblowing side vortex
moves toward the surface, producing a small side force
and yawing moment toward the nonblowing side of the
body. For MFR = 1.49 × 10–3 (fig. 5.19(c)), the primary
vortex on the blowing side is entrained by the jet and
moves downward toward the surface due to the Coanda
effect. The nonblowing side vortex moves away from
the surface. Here the movement of the vortices and the
resulting lower pressure region on the blowing side cause
a side force and yawing moment toward the blowing side.
At the highest MFR, MFR = 4.17 × 10–3, the jet is so
strong that it acts to separate, rather than entrain, the
blowing-side vortex flow (fig. 5.19(d)). The blowing-side
vortex moves away from the surface and the nonblowing-
side vortex moves toward the surface. This causes cY and
cn to be negative in the region of the jet, as shown in
figures 5.13 and 5.14, respectively. At this high mass
flow ratio, the pressure at the jet exit is about ten times
greater than the free-stream pressure. Hence the jet
rapidly expands after leaving the blowing slot (ref. 43),

which causes the jet to separate, thereby pushing the
primary vortex away from the surface.

The behavior of the primary vortex is shown in
figure 5.20 using off-surface instantaneous streamlines.
The black and dark gray particle traces represent the
blowing side and nonblowing side vortices, respectively.
The light gray streamlines represent streamlines ema-
nating from the blowing slot. For MFR = 0.23 × 10–3

(fig. 5.20(b)), the jet is entrained into the blowing side
primary vortex and there appears to be no visible effect
on the nonblowing side vortex. For MFR = 1.49 × 10–3

(fig. 5.20(c)), the Coanda effect is clearly seen as the
blowing jet moves along the surface merging with the
nonblowing-side vortex and entrains the blowing side
primary vortex. The position of the nonblowing-side
vortex moves outboard. For the highest MFR,
MFR = 4.17 × 10–3 (fig. 5.20(d)), the blowing jet
separates from the surface near the centerline and creates
a vortex in the middle of the forebody which entrains
streamlines from the primary blowing side vortex. The
nonblowing side vortices are hardly affected.

Effect of axial location of the blowing slot– It is
recognized (refs. 1, 6, 10, and 44) that perturbations
located close to the nose are more effective in developing
asymmetric flows over the body than distances located
farther downstream. In the wind tunnel experiment
conducted at Cal Poly (ref. 10), it was found that the most
effective slot configuration of those tested on the generic
chined forebody was a slot 1 in. long located 0.5 in. from
the tip of the nose (referred to as Slot 1) and blowing
tangentially toward the leeward symmetry plane. To
investigate the effect of axial slot location computa-
tionally, solutions were obtained for an additional slot
configuration (which had also been tested experimen-
tally). This slot (referred to as Slot 2) had the same 1 in.
length as Slot 1, but extended rearward from a point
1.5 in. from the tip of the nose. The slot configurations
are shown in figure 1.4.

The variations of ∆CY (fig. 5.21) and ∆Cn (fig. 5.22) with
MFR for the two slot configurations are similar. The
computed results for both slot configurations show a force
reversal at low MFRs, followed by increasing ∆CY and
∆Cn with increasing MFR. Slot 1 produces a larger
magnitude of ∆CY and ∆Cn for a given MFR than does
Slot 2. This trend is clearly seen at the higher MFRs and
was seen in both the numerical and experimental results.
It is also consistent with results obtained by Degani and
Schiff, who conducted a numerical analysis on a slender
body of revolution and found that small disturbances near
the tip of the nose produce greater effects on the flow
field than disturbances placed farther aft (ref. 45).
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The computed surface flow pattern for Slot 2 with
MFR = 1.49 × 10–3 (fig. 5.23) shows the effect of the jet
to be localized about the blowing region. The separation
lines aft of the blowing region are in essentially the same
location as seen in the no-blowing case (fig. 5.6) and
for blowing from Slot 1 at the same MFR (fig. 5.16).
Figure 5.23 also shows the helicity density contours for
three forebody stations. The first fuselage station is
located forward of the blowing region and thus does not
show any asymmetry due to the jet. The contours at
fuselage stations fs = 4.0 and fs = 15.5 both show that the
blowing-side vortex moves closer to the surface and the
nonblowing-side vortex moves away. As was seen for
blowing from Slot 1, this effect again decreases in the
axial direction.

The helicity density contours at fs = 4.0 (fig. 5.24) show
that blowing from Slot 1 (fig. 5.24(b)) causes a greater
change from the symmetric no-blowing case (fig. 5.24(a))
than does blowing from Slot 2 (fig. 5.24(c)). Not only did
the blowing-side and nonblowing-side vortices move
closer and away from the surface, respectively, but the
Coanda effect is stronger in Slot 1, since more of the
flow is entrained and moves closer to the middle of the
forebody. This can be also be seen in the instantaneous
streamlines in figure 5.25 where more of the blowing side
vortices are entrained by the blowing jet from Slot 1 than
from Slot 2.

Effect of circumferential location of the blowing
slot– Only one circumferential slot location, on the upper
chine surface and blowing inboard, was tested in the
Cal Poly wind tunnel experiment (ref. 10). In order to
determine whether an alternative circumferential slot
location could be more effective in developing side forces
and yawing moments on the body, computations were
carried out for a slot located on the lower chine surface
and blowing tangentially outboard (fig. 4.4). This slot had
the same axial location and extent as Slot 1.

As discussed in section 1, the typical effect of tangential
slot blowing from the top surface is to move the blowing-
side vortex closer to the surface and the nonblowing side
vortex away. However, if blowing is from the bottom
surface, the opposite occurs (fig. 1.3). Outboard blowing
from the bottom slot moves the blowing-side vortex away
from the body, and thus produces a side force and yawing
moment directed away from the blowing side.

Blowing from the upper slot produces a greater change in
side force and yawing moment for a given MFR than does
blowing from the bottom slot, as shown in figures 5.26
and 5.27. As seen earlier, at the low MFRs blowing from
the upper slot produces a force reversal; however, this is
not found in the bottom-blowing results. This is probably
due to the different method by which force is generated.

Blowing from the bottom does not require entrainment of
the vortex toward the surface. Therefore, with bottom
blowing, at low MFR values, the blowing-side vortex is
still pushed away from the surface.

Figure 5.28 presents the surface flow pattern and
helicity density contours for bottom slot blowing at
MFR = 1.49 × 10–3, analogous to those shown for upper-
slot blowing in figure 5.16. Comparing the surface flow
patterns for blowing from the top (fig. 5.16) and from the
bottom (fig. 5.28) slots, for the bottom-blowing case, the
secondary and tertiary separation lines immediately aft of
the blowing region are moved toward the leeward plane
of symmetry. In both blowing cases, the separation line
locations in the aft portion of the forebody do not differ
substantially from the no-blowing results. The helicity
density contours obtained for the bottom-blowing case
(fig. 5.28) show that in contrast to the upper-slot blowing
case (fig. 5.16), the blowing-side vortex moves away
from the surface and the nonblowing-side vortex moves
closer to the surface.

6. Conclusions

A computational investigation of tangential slot blowing
for forebody flow control on a generic chined forebody
has been performed. The effects of several parameters on
the ability of pneumatic flow control to generate side
forces and yawing moments on a forebody with fixed
separation lines were studied. These parameters include
jet mass flow ratios, angle of attack, and slot position in
the axial and circumferential direction. The computed
results were compared with available wind tunnel test
data to determine the accuracy of the numerical analysis.

Solutions were obtained by solving the Reynolds-
averaged, thin-layer, Navier–Stokes equations. A grid
sensitivity test was conducted using nonblowing solutions
to determine the appropriate circumferential grid density.
A total of twenty-eight blowing solutions have been
obtained, using three blowing slot locations near the tip of
the body; two located above the chine, the other below
the chine. Two angles of attack are studied, α = 30 deg
and α = 40 deg. Various jet mass flow ratios are
investigated for each slot location and angle of attack.

The computed results were compared to results from a
low-speed, low-Reynolds-number experiment. The
computed results show reasonable agreement with the
trends observed in the experiment.

The computational and experimental results indicate that,
at a given mass flow rate, the side forces and yawing
moments generated by slot blowing increase as the body
angle of attack increases. At high angles of attack, the
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flow becomes highly sensitive to small changes in the
geometry or flow field. Therefore, for a given perturba-
tion, in this case the jet, a larger change was produced as
the angle of attack increases.

In general, the computations indicated that the side forces
and yawing moments generated by slot blowing increased
as the jet mass flow ratio increased for α = 30 deg. At the
higher angle of attack α = 40 deg, three distinct regions
were observed in the results computed for the slot located
above the chine and closest to the tip of the nose. The first
region showed that at low MFRs tangential slot blowing
produced a negative side force and nose-left yawing
moment. This was caused by the inability of the jet to
move the vortices on the blowing side close to the
surface. The next region showed that ∆CY and ∆Cn
were positive and increased as MFR increased due to the
Coanda effect. The last region shows a decrease in ∆CY
and ∆Cn at the high MFRs which was caused by the
blowing jet being underexpanded.

The computational and experimental results showed that,
for the slots located above the chine, greater changes of
side forces and yawing moments were produced by the
slot located closest to the tip of the nose. This agreed with
the results of previous work which reported that small
disturbances near the tip of the nose produced greater
effects on the flow field than if placed farther aft.

Tangential slot blowing from the bottom surface
produced a nose-left yawing moment when blowing was
from the right side of the forebody. In contrast, blowing
from the slot on the top surface produced a nose-right
yawing moment when the blowing was from the right
side. At a given mass flow ratio and angle of attack,
tangential slot blowing from the top surface was found to
be more efficient at generating yawing moments than
blowing from the bottom surface. It appears to be more
efficient to generate a side force and yawing moment by
moving the blowing side vortices closer to the surface and
moving the nonblowing side vortices away, as is the case
with blowing from the top.

Numerical analysis shows that tangential slot blowing on
a generic chined forebody can be used as a means of
forebody flow control to generate side force and yawing
moment. Forebody flow control will improve the
performance of future aircraft designs.
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Table 5.1. List of numerical solutions and jet exit conditions; M∞ = 0.2, Red = 2.81 × 105

Surface Slot α MFR ṁ cµ Mjet Ptot Ttot Pe/Pa

(× 1000) (× 1000 lbm/s) (lb/in.2) (°R)

Top Slot 1 30 deg 0 0 0 – – – –

0.232 0.417 0.042 0.57 5.05 545 0.94

0.681 1.220 0.221 1.00 13.05 636 1.59

1.490 2.670 0.483 1.00 28.51 636 3.47

40 deg 0.000 0.000 0.000 – – – –

0.095 0.174 0.007 0.24 4.36 542 0.94

0.232 0.417 0.042 0.57 5.05 639 0.94

0.396 0.722 0.126 0.98 7.74 636 0.94

0.681 1.220 0.221 1.00 13.05 636 1.59

1.490 2.670 0.483 1.00 28.51 636 3.47

2.360 4.310 0.761 1.00 46.03 636 5.47

2.640 4.810 0.851 1.00 51.48 636 6.19

3.270 5.950 1.053 1.00 63.66 636 7.56

3.720 6.770 1.198 1.00 72.45 636 8.61

4.170 7.600 1.344 1.00 81.25 636 9.66

Slot 2 40 deg 0 0 0 – – – –

0.095 0.174 0.007 0.24 4.36 542 0.94

0.232 0.417 0.042 0.57 5.05 639 0.94

0.396 0.722 0.126 0.98 7.74 636 0.94

0.681 1.220 0.221 1.00 13.05 636 1.59

1.490 2.670 0.483 1.00 28.51 636 3.47

2.360 4.310 0.761 1.00 46.03 636 5.47

Bottom Slot 1 30 deg 0 0 0 – – – –

0.232 0.417 0.042 0.57 5.05 639 0.94

0.396 0.722 0.126 0.98 7.74 636 0.94

0.681 1.220 0.221 1.00 13.05 636 1.59

1.040 1.900 0.337 1.00 20.34 636 2.42

1.490 2.670 0.483 1.00 28.51 636 3.47

40 deg 0 0 0 – – – –

0.232 0.417 0.042 0.57 5.05 545 0.94

0.681 1.220 0.221 1.00 13.05 636 1.59

1.490 2.670 0.483 1.00 28.51 636 3.47

2.360 4.310 0.761 1.00 46.03 636 5.47
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Figure 1.1. Yaw control power.

Slot

Resultant Side Force and 
Yawing Moment

Vjet

Figure 1.2.  Forebody tangential slot blowing concept.
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Figure 1.3. Effects of tangential slot blowing on a chined forebody.
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Figure 1.4. Dimensions of the generic chined forebody wind tunnel model.



25

Figure 2.1. Generalized transformation from the physical domain to the computational domain.

Figure 2.2. Flow structure in the cross-flow plane.
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Figure 2.3. The behavior of F(y) at large incidence.
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Figure 4.1. Portion of grid modeling generic chined forebody (every other point shown for clarity).
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Figure 4.2. Cross-sectional view of blowing slot showing the backward facing step.
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Figure 4.3. Cross section of forebody and slot grid overlap.
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Figure 4.4. Slot configurations for top and bottom slot blowing.

Figure 4.5. Grid boundaries on the starboard side of the forebody.
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Figure 5.1. Surface grid lines of the cases used in the grid sensitivity test.
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Figure 5.2. Computed surface flow patterns and helicity density contours, coarse density grid, 50 × 63 × 50 points;
M∞ = 0.2, α = 30 deg, Red = 2.81 × 105.
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Figure 5.3. Computed surface flow patterns and helicity density contours, medium density grid, 50 × 123 × 50 points;
M∞ = 0.2, α = 30 deg, Red = 2.81 × 105.
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Figure 5.4. Computed surface flow patterns and helicity density contours, fine density grid, 50 × 243 × 50 points;
M∞ = 0.2, α = 30 deg, Red = 2.81 × 105.
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Figure 5.5. Computed surface flow patterns and helicity density contours, no-blowing; M∞ = 0.2, α = 30 deg,
Red = 2.81 × 105.
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Figure 5.6. Computed surface flow patterns and helicity density contours, no-blowing; M∞ = 0.2, α = 40 deg,
Red = 2.81 × 105.
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Figure 5.7. Comparison of numerical and experimental incremental side force data for Slot 1; α = 30 deg,
Red = 2.81 × 105.
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Figure 5.8. Comparison of numerical and experimental incremental yawing moment data for Slot 1; α = 30 deg,
Red = 2.81 × 105.
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Figure 5.9. Comparison of numerical and experimental incremental side force data for Slot 1; α = 40 deg,
Red = 2.81 × 105.
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Figure 5.10. Comparison of numerical and experimental incremental yawing moment data for Slot 1; α = 40 deg,
Red = 2.81 × 105.
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Figure 5.11. Effect of angle of attack on yawing moment produced by slot blowing; Red = 2.81 × 105.



40

Figure 5.12. Computed helicity density contours at fuselage station fs = 4.0; M∞ = 0.2, Red = 2.81 × 105.
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Figure 5.13. Distribution of computed sectional side-force coefficient along the body; M∞ = 0.2, α = 40 deg,
Red = 2.81 × 105.
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Figure 5.14. Distribution of computed sectional yawing-moment coefficient along the body; M∞ = 0.2, α = 40 deg,
Red = 2.81 × 105.
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Figure 5.15. Computed surface flow patterns and helicity density contours; M∞ = 0.2, α = 40 deg, Red = 2.81 × 105,
MFR = 0.23 × 10–3.
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Figure 5.16. Computed surface flow patterns and helicity density contours; M∞ = 0.2, α = 40 deg, Red = 2.81 × 105,
MFR = 1.49 × 10–3.
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Figure 5.17. Computed surface flow patterns and helicity density contours; M∞ = 0.2, α = 40 deg, Red = 2.81 × 105,
MFR = 4.17 × 10–3.
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Figure 5.18. Surface flow patterns, M∞ = 0.2, α = 40 deg, Red = 2.81 × 105.
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Figure 5.19. Computed helicity density contours at fs = 1.0; M∞ = 0.2, α = 40 deg, Red = 2.81 × 105.
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Figure 5.20. Off-surface instantaneous streamlines; M∞ = 0.2, α = 40 deg, Red = 2.81 × 105.
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Figure 5.21. Comparison of numerical and experimental incremental side force data for Slot 1 and Slot 2;
Red = 2.81 × 105.
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Figure 5.22. Comparison of numerical and experimental incremental yawing moment data for Slot 1 and Slot 2;
Red = 2.81 × 105.
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Figure 5.23. Computed surface flow patterns and helicity density contours, Slot 2; M∞ = 0.2, α = 40 deg,
Red = 2.81 × 105, MFR = 1.49 × 10–3.
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Figure 5.24. Computed helicity density contours at fs = 4.0; M∞ = 0.2, α = 40 deg, Red = 2.81 × 105, MFR = 1.49 × 10–3.
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Figure 5.25. Instantaneous streamlines; M∞ = 0.2, α = 40 deg, Red = 2.81 × 105, MFR = 1.49 × 10–3.
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Figure 5.26. Comparison of numerical incremental side force data for blowing from the top surface and bottom surface,
Slot 1; M∞ = 0.2, α = 40 deg, Red = 2.81 × 105.
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Figure 5.27. Comparison of numerical incremental yawing moment data for blowing from the top surface and bottom
surface, Slot 1; M∞ = 0.2, α = 40 deg, Red = 2.81 × 105.
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Figure 5.28. Computed surface flow patterns and helicity density contours, bottom blowing; M∞ = 0.2, α = 40 deg,
Red = 2.81 × 105, MFR = 1.49 × 10–3.
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